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Crystallography has been 
highly successful

Could it 
be any 
better?

Now 105839 
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do these mean?
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Topics

Signal versus noise

Random versus systematic error

Accuracy versus precision

Unmerged versus merged data

R-values versus correlation coefficients

Choice of high-resolution cutoff
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signal vs noise
easy

hard

impossible

threshold of “solvability”

James Holton slide
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„noise“: what is noise?
what kinds of errors exist?

noise = random error + systematic error

random error results from quantum effects

systematic error results from everything 
else: technical or other macroscopic 
aspects of the experiment
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Random error (noise)

Statistical events:
● photon emission from xtal 
● photon absorption in detector
● electron hopping in semiconductors 
(amplifier etc)
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Systematic errors (noise)

● beam flicker (instability) in flux or direction
● shutter jitter 
● vibration due to cryo stream
● split reflections, secondary lattice(s)
● absorption from crystal and loop
● radiation damage
● detector calibration and inhomogeneity; overload
● shadows on detector
● deadtime in shutterless mode
● imperfect assumptions about the experiment and its geometric 
parameters in the processing software
● ... 

non-obvious
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Adding noise

1  + 1   = 1.4 

32 + 12 = 3.22

102 + 12 = 10.052

σ1
2 + σ2

2  = σtotal
2

James Holton slide

non-obvious

12 + 12 = 1.42
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This law is only 
valid if errors are 
independent!
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random error obeys Poisson statistics 
error = square root of signal 

Systematic error is proportional to signal
error = x * signal    (e.g. x=0.02 ... 0.10 )

(which is why James Holton calls it „fractional error“; there are 
exceptions)

 

How do random and systematic 
error depend on the signal?

non-obvious
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Consequences
● need to add both types of errors
● at high resolution, random error 
dominates
● at low resolution, systematic error 
dominates
● but: radiation damage influences 
both the low and the high resolution 
(the factor x is low at low resolution, and 
high at high resolution)

non-obvious
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B. Rupp, Bio-
molecular 
Crystallography

How to measure quality?

Accuracy  – how close to the true value?
Precision – how close are measurements?

non-obvious



19

What is the „true value“?

➔  if only random error exists, accuracy = precision (on 
average)
➔  if unknown systematic error exists, true value cannot be 
found from the data themselves
➔  a good model can provide an approximation to the truth 
➔  model calculations do provide the truth
➔  consequence: precision can easily be calculated, but not 
accuracy 
➔  accuracy and precision differ by the unknown 
systematic error

non-obvious

All data quality indicators estimate precision 
(only), but YOU want to know accuracy!
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Numerical example

Repeatedly determine π=3.14159... as 2.718, 2.716, 2.720 
: 
high precision, low accuracy. 
Precision= relative deviation from average value=
(0.002+0+0.002)/(2.718+2.716+2.720) = 0.049%

Accuracy= relative deviation from true value=
(3.14159-2.718) / 3.14159 = 13.5%
                                                               

Repeatedly determine π=3.14159... as 3.1, 3.2, 3.0  : 
low precision, high accuracy
Precision= relative deviation from average value=
(0.04159+0+0.05841+0.14159)/(3.1+3.2+3.0) = 2.6%

Accuracy= relative deviation from true value: 3.14159-3.1 = 1.3%
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Precision indicators for the unmerged (individual) 
observations: 
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i
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i 
>   (σ

i 
from error propagation)

Calculating the precision of 
unmerged data
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∑
hkl

∑
i=1

n

I i (hkl )

Rmeas=
∑
hkl √

n
n−1

∑
i=1

n

∣I i (hkl )− Ī (hkl )∣
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Averaging („merging“) of 
observations

Intensities:
I = ∑ Ii/σi

2 / ∑ 1/σi
2

Sigmas: 
σ2 = 1 / ∑ 1/σi

2

(see Wikipedia: „weighted mean“)
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Merging of observations may 
improve accuracy and precision
● Averaging („merging“) requires multiplicity („redundancy“)
● (Only) if errors are unrelated, averaging with multiplicity n 
decreases the error of the averaged data by sqrt(n)
● Random errors are unrelated by definition: averaging always 
decreases the random error of merged data
● Averaging may decrease the systematic error in the merged 
data. This requires sampling of its possible values - „true 
multiplicity“
● If errors are related, precision improves, but not accuracy

non-obvious
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● using the sqrt(n) law: <I/σ(I)>  

● by comparing averages of two randomly selected half-datasets X,Y:

Calculating the precision of 
merged data

H,K,L        I
i 
 in order of                          Assignment to                Average I of

                measurement                        half-dataset                       X    Y
1,2,3        100 110 120  90 80 100        X, X, Y, X, Y, Y              100  100
1,2,4         50    60    45     60                Y X Y X                           60   47.5 
1,2,5        1000 1050  1100 1200          X Y Y X                         1100 1075
 ...  

(calculate the R-factor (D&K1997) or correlation coefficient (K&D 2012) on X, Y )

R pim=
∑
hkl

√1 /n−1∑
i=1

n

∣I i (hkl )− Ī (hkl )∣

∑
hkl

∑
i=1

n

I i (hkl )

R
pim

 ~ 0.8 / <I/σ > 
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I/σ   with  σ2 = 1 / ∑ 1/σ
i

2
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It is essential to understand the difference between the two 
types, but you don't find this in the papers / textbooks!

Indicators for precision of unmerged data help to e.g.  
* decide between spacegroups 
* calculate amount of radiation damage (see XDS tutorial) 

Indicators for precision of merged data assess suitability
* for downstream calculations (MR, phasing, refinement)

Shall I use an indicator for precision 
of unmerged data, or of merged 
data?
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Crystallographic statistics - which 
indicators are being used?

• Data R-values:  Rpim < Rmerge=Rsym < Rmeas  

• Model R-values: Rwork/Rfree

• I/σ (for unmerged or merged data !)

• CC
1/2

 and CC
anom

 for the merged data

Rmerge=
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∑
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n

∣I i (hkl )− Ī (hkl )∣
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n
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Rwork / free=
∑
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merged data

unmerged data
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Decisions and compromises

Which high-resolution cutoff for refinement?
Higher resolution means better accuracy and maps
But: high resolution yields high Rwork/Rfree!

Which datasets/frames to include into scaling?
 
Reject negative observations or unique 

reflections?
The reason why it is difficult to answer “R-value questions” is 
that no proper mathematical theory exists that uses absolute 
differences; concerning the use of R-values, Crystallography 
is disconnected from mainstream Statistics
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Improper crystallographic 
reasoning

● typical example: data to 2.0 Å resolution
● using all data: Rwork=19%, Rfree=24% 
(overall)
● cut at 2.2 Å resolution: Rwork=17%, Rfree=23%
● „cutting at 2.2 Å is better because it gives 
lower R-values“
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Proper crystallographic 
reasoning

1. Better data allow to obtain a better model

2. A better model has a lower Rfree, and a 
lower Rfree-Rwork gap

3. Comparison of model R-values is only 
meaningful when using the same data

4. Taken together, this leads to the „paired 
refinement technique“: compare models in 
terms of their R-values against the same data.
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Example: Cysteine DiOxygenase (CDO; 
PDB 3ELN) re-refined against 15-fold 

weaker data

Rmerge ■

Rpim  ●

Rfree

Rwork

I/sigma
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Is there information beyond the 
conservative hi-res cutoff?

“Paired refinement technique“:

• refine at (e.g.) 2.0Å and at 1.9Å using the 
same starting model and refinement 
parameters
• since it is meaningless to compare R-
values at different resolutions, calculate the 
overall R-values of the 1.9Å model at 2.0Å 
(main.number_of_macro_cycles=1 
strategy=None fix_rotamers=False 
ordered_solvent=False)
• ΔR=R1.9(2.0)-R2.0(2.0)
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Measuring the precision of merged data 
with a correlation coefficient

• Correlation coefficient has clear meaning and well-known 
statistical properties 

• Significance of its value can be assessed by Student's t-
test 
(e.g. CC>0.3 is significant at p=0.01 for n>100; CC>0.08 
is significant at p=0.01 for n>1000)

• Apply this idea to crystallographic intensity data: use 
“random half-datasets” → CC1/2   (called CC_Imean by 
SCALA/aimless, now CC

1/2
 )

• From CC1/2 , we can analytically estimate CC of the  
merged dataset against the true (usually unmeasurable) 
intensities using

• (Karplus and Diederichs (2012) Science 336, 1030) 

CC*=√ 2CC1/21+CC 1/2
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Data CCs

CC1/2 

CC* Δ

I/sigma
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Model CCs 

• We can define CCwork, CCfree as CCs calculated on Fcalc
2 of 

the working and free set, against the experimental data
• CCwork and CCfree can be directly compared with CC* 

―    CC*

Dashes: CCwork , 
CCfree against 
weak exp‘tl data

Dots: CC‘work , 
CC‘free against 
strong 3ELN 
data
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Four new concepts for improving crystallographic 
procedures

Image 
courtesy of 

P.A. Karplus
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Summary
 

• To predict suitability of data for downstream 
calculations (phasing, MR, refinement), we should 
use indicators of merged data precision

• Rmerge should no longer be considered as useful for 
deciding e.g. on a high-resolution cutoff, or on which 
datasets to merge, or how large total rotation

• I/σ has two drawbacks: programs do not agree on σ, 
and its value can only rise with multiplicity 

• CC1/2 is well understood, reproducible, and directly 
links to model quality indicators
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Thank you!

PDF available – pls send email to 
kay.diederichs@uni-konstanz.de
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